13 research outputs found

    Combining a hierarchical task network planner with a constraint satisfaction solver for assembly operations involving routing problems in a multi-robot context

    Get PDF
    This work addresses the combination of a symbolic hierarchical task network planner and a constraint satisfaction solver for the vehicle routing problem in a multi-robot context for structure assembly operations. Each planner has its own problem domain and search space, and the article describes how both planners interact in a loop sharing information in order to improve the cost of the solutions. The vehicle routing problem solver gives an initial assignment of parts to robots, making the distribution based on the distance among parts and robots, trying also to maximize the parallelism of the future assembly operations evaluating during the process the dependencies among the parts assigned to each robot. Then, the hierarchical task network planner computes a scheduling for the given assignment and estimates the cost in terms of time spent on the structure assembly. This cost value is then given back to the vehicle routing problem solver as feedback to compute a better assignment, closing the loop and repeating again the whole process. This interaction scheme has been tested with different constraint satisfaction solvers for the vehicle routing problem. The article presents simulation results in a scenario with a team of aerial robots assembling a structure, comparing the results obtained with different configurations of the vehicle routing problem solver and showing the suitability of using this approach.Unión Europea ARCAS FP7-ICT-287617Unión Europea H2020-ICT-644271Unión europea H2020-ICT-73166

    Coastal Areas Division and Coverage with Multiple UAVs for Remote Sensing

    Get PDF
    This paper tackles the problems of exact cell decomposition and partitioning of a coastal region for a team of heterogeneous Unmanned Aerial Vehicles (UAVs) with an approach that takes into account the field of view or sensing radius of the sensors on-board. An initial sensor-based exact celldecompositionoftheareaaidsinthepartitioningprocess,whichisperformedintwosteps. Inthe first step, a growing regions algorithm performs an isotropic partitioning of the area based on the initial locations of the UAVs and their relative capabilities. Then, two novel algorithms are applied to compute an adjustment of this partitioning process, in order to solve deadlock situations that generate non-allocated regions and sub-areas above or below the relative capabilities of the UAVs. Finally, realistic simulations have been conducted for the evaluation of the proposed solution, and the obtained results show that these algorithms can compute valid and sound solutions in complex coastal region scenarios under different setups for the UAVsMinisterio de Economía, Industria y Competitividad DPI2014-C2-1-

    Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR

    Get PDF
    This paper addressed the challenge of exploring large, unknown, and unstructured industrial environments with an unmanned aerial vehicle (UAV). The resulting system combined well-known components and techniques with a new manoeuvre to use a low-cost 2D laser to measure a 3D structure. Our approach combined frontier-based exploration, the Lazy Theta* path planner, and a flyby sampling manoeuvre to create a 3D map of large scenarios. One of the novelties of our system is that all the algorithms relied on the multi-resolution of the octomap for the world representation. We used a Hardware-in-the-Loop (HitL) simulation environment to collect accurate measurements of the capability of the open-source system to run online and on-board the UAV in real-time. Our approach is compared to different reference heuristics under this simulation environment showing better performance in regards to the amount of explored space. With the proposed approach, the UAV is able to explore 93% of the search space under 30 min, generating a path without repetition that adjusts to the occupied space covering indoor locations, irregular structures, and suspended obstaclesUnión Europea Marie Sklodowska-Curie 64215Unión Europea MULTIDRONE (H2020-ICT-731667)Uniión Europea HYFLIERS (H2020-ICT-779411

    Distributed approach for coverage and patrolling missions with a team of heterogeneous aerial robots under communication constraints

    Get PDF
    Using aerial robots in area coverage applications is an emerging topic. These applications need a coverage path planning algorithm and a coordinated patrolling plan. This paper proposes a distributed approach to coordinate a team of heterogeneous UAVs cooperating efficiently in patrolling missions around irregular areas, with low communication ranges and memory storage requirements. Hence it can be used with small‐scale UAVs with limited and different capabilities. The presented system uses a modular architecture and solves the problem by dividing the area between all the robots according to their capabilities. Each aerial robot performs a decomposition based algorithm to create covering paths and a ’one‐to‐one’ coordination strategy to decide the path segment to patrol. The system is decentralized and fault‐tolerant. It ensures a finite time to share information between all the robots and guarantees convergence to the desired steady state, based on the maximal minimum frequency criteria. A set of simulations with a team of quad‐rotors is used to validate the approach

    Closed-Loop Behavior of an Autonomous Helicopter Equipped with a Robotic Arm for Aerial Manipulation Tasks

    Get PDF
    This paper is devoted to the control of aerial robots interacting physically with objects in the environment and with other aerial robots. The paper presents a controller for the particular case of a small‐scaled autonomous helicopter equipped with a robotic arm for aerial manipulation. Two types of influences are imposed on the helicopter from a manipulator: coherent and non ‐ coherent influence. In the former case, the forces and torques imposed on the helicopter by the manipulator change with frequencies close to those of the helicopter movement. The paper shows that even small interaction forces imposed on the fuselage periodically in proper phase could yield to low frequency instabilities and oscillations, so called phase circle

    An efficient distributed area division method for cooperative monitoring applications with multiple uavs

    Get PDF
    This article addresses the area division problem in a distributed manner providing a solution for cooperative monitoring missions with multiple UAVs. Starting from a sub-optimal area division, a distributed online algorithm is presented to accelerate the convergence of the system to the optimal solution, following a frequency-based approach. Based on the “coordination variables” concept and on a strict neighborhood relation to share information (left, right, above and below neighbors), this technique defines a distributed division protocol to determine coherently the size and shape of the sub-area assigned to each UAV. Theoretically, the convergence time of the proposed solution depends linearly on the number of UAVs. Validation results, comparing the proposed approach with other distributed techniques, are provided to evaluate and analyze its performance following a convergence time criterion.European Union’s Horizon 2020 AERIAL-CORE Project Grant 871479CDTI (sPAIN) “Red Cervera” Programme iMOV3D Spanish R&D projec

    Release of Sterile Mosquitoes with Drones in Urban and Rural Environments under the European Drone Regulation

    Get PDF
    In recent years, several countries have developed the use of sterile insect techniques (SIT) to fight against mosquitoes that transmit diseases. From a technical and economic point of view, the use of drones in the aerial release of sterile mosquitoes leads to important improvements in aerial coverage and savings in operational costs due to the requirement of fewer release sites and field staff. However, these operations are under the European drone regulation, one of the most advanced in the world. The main contribution and novelty of this paper with respect to previous work is the analysis of the SIT application with drones under the European risk-based regulation in two scenarios: urban and rural areas. The specific operations risk assessment (SORA) methodology has been applied to assess the risk of drone operations in these scenarios. The paper presents the operational requirements for aerial release of mosquitoes with drones along with the regulatory considerations that must be applied. Finally, an overview of the conditions in operation that could relax risks and mitigation measures is also discussed.Ministerio de Ciencia e Innovación iMOV3D (CER-20191007)

    Ten years of cooperation between mobile robots and sensor networks

    Get PDF
    This paper presents an overview of the work carried out by the Group of Robotics, Vision and Control (GRVC) at the University of Seville on the cooperation between mobile robots and sensor networks. The GRVC, led by Professor Anibal Ollero, has been working over the last ten years on techniques where robots and sensor networks exploit synergies and collaborate tightly, developing numerous research projects on the topic. In this paper, based on our research, we introduce what we consider some relevant challenges when combining sensor networks with mobile robots. Then, we describe our developed techniques and main results for these challenges. In particular, the paper focuses on autonomous self-deployment of sensor networks; cooperative localization and tracking; self-localization and mapping; and large-scale scenarios. Extensive experimental results and lessons learnt are also discussed in the paper

    An aerial robot path follower based on the ’Carrot chasing’ algorithm

    Get PDF
    This paper presents a three-dimensional path follower implementation for an aerial robot based on the carrot-chasing algorithm. The main objective was to improve the performance of the position controller of the PX4 autopilot when following a list of waypoints. This autopilot is widely used in the aerial robotics community, but we needed to improve its performance for navigation in cluttered environments. Different simulations have been carried out under the ROS (Robotic Operating System) environment for the comparison between the position controller of the PX4 and the proposed path follower. In addition, we have implemented different modes to generate the path from the input list of waypoints that are also analyzed in our simulation environment

    Procedures for the Integration of Drones into the Airspace Based on U-Space Services

    Get PDF
    A safe integration of drones into the airspace is fundamental to unblock the potential of drone applications. U-space is the drone traffic management solution for Europe, intended to handle a large number of drones in the airspace, especially at very low level (VLL). This paper presents the procedures we have designed and tested in real flights in the SAFEDRONE European project to pave the way for a safe integration of drones into the airspace using U-space services. We include three important aspects: Design of procedures related to no-fly zones, ensure separation with manned aircraft, and autonomous non-cooperative detect-and-avoid (DAA) technologies. A specific U-space architecture has been designed and implemented for flight campaigns with up to eight drones with different configurations and a manned aircraft. From this experience, specific recommendations about procedures to exit and avoiding no-fly zones are presented. Additionally, it has been concluded that the use of surveillance information of manned aircraft will allow a more efficient use of the airspace while maintaining a proper safety level, avoiding the creation of large geofence areas.Programa Horizonte 2020. Unión Europea 78321
    corecore